GA-NET: Global Attention Network for Point Cloud Semantic Segmentation
نویسندگان
چکیده
How to learn long-range dependencies from 3D point clouds is a challenging problem in cloud analysis. Addressing this problem, we propose global attention network for semantic segmentation, named as GA-Net, consisting of point-independent module and point-dependent obtaining contextual information paper. The simply shares map all points. In the module, each point, novel random cross block using only two randomly sampled subsets exploited Additionally, design point-adaptive aggregation replace linear skip connection aggregating more discriminate features. Extensive experimental results on three public datasets demonstrate that our method outperforms state-of-the-art methods most cases.
منابع مشابه
PU-Net: Point Cloud Upsampling Network
Learning and analyzing 3D point clouds with deep networks is challenging due to the sparseness and irregularity of the data. In this paper, we present a data-driven point cloud upsampling technique. The key idea is to learn multilevel features per point and expand the point set via a multibranch convolution unit implicitly in feature space. The expanded feature is then split to a multitude of f...
متن کاملSO-Net: Self-Organizing Network for Point Cloud Analysis
This paper presents SO-Net, a permutation invariant architecture for deep learning with orderless point clouds. The SO-Net models the spatial distribution of point cloud by building a Self-Organizing Map (SOM). Based on the SOM, SO-Net performs hierarchical feature extraction on individual points and SOM nodes, and ultimately represents the input point cloud by a single feature vector. The rece...
متن کاملUnstructured Point Cloud Semantic Labeling Using Deep Segmentation Networks
In this work, we describe a new, general, and efficient method for unstructured point cloud labeling. As the question of efficiently using deep Convolutional Neural Networks (CNNs) on 3D data is still a pending issue, we propose a framework which applies CNNs on multiple 2D image views (or snapshots) of the point cloud. The approach consists in three core ideas. (i) We pick many suitable snapsh...
متن کاملLarge-scale Point Cloud Semantic Segmentation with Superpoint Graphs
We propose a novel deep learning-based framework to tackle the challenge of semantic segmentation of largescale point clouds of millions of points. We argue that the organization of 3D point clouds can be efficiently captured by a structure called superpoint graph (SPG), derived from a partition of the scanned scene into geometrically homogeneous elements. SPGs offer a compact yet rich represen...
متن کاملA novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2021
ISSN: ['1558-2361', '1070-9908']
DOI: https://doi.org/10.1109/lsp.2021.3082851